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Abstract

This paper deals with the applicability of multiple tuned mass dampers (MTMD) on the vibration control of irreg-
ular buildings modelled as torsionally coupled structures due to base motions considering the soil–structure interaction
(SSI) effect. An efficient modal analysis methodology is used to systematically assess the combined soil–structure inter-
action and torsional coupling effects on asymmetric buildings. This method is implemented in the frequency domain to
accurately incorporate the frequency-dependent foundation impedance functions. The performance index of MTMD is
established based on the foundation-induced building floor motions with and without the installation of MTMDs.
Unlike the traditional MTMD design criteria, the frequency ratio of each MTMD substructure to the controlled struc-
tural frequency is independent, in this paper, so that the MTMD with the optimal parameters can actually flatten the
transfer functions of building responses. Numerical verifications show that the increase of height–base ratio of an irreg-
ular building and the decrease of relative stiffness of soil to structure generally amplify both SSI and MTMD detuning
effect, especially for a building with highly torsionally coupled effect. With appropriately enlarging the frequency spac-
ing of the optimal MTMDs, the detuning effect can be reduced. Moreover, the results of numerical investigations also
show that the MTMD is more effective than single TMD as the SSI effect is significant.
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1. Introduction

Due to recent intensive analytical and experimental research, vibration control in structures using pas-
sive Tuned Mass Dampers (TMDs) is gaining more acceptance not only in the design of new structures and
components but also in the retrofit of existing structures to enhance their reliability against winds, earth-
quakes and human activities (Lin et al., 2001). Since 1971, lots of TMDs have been successfully installed
in high-rise buildings and towers. Most of these retrofits were reported to be effective in reducing structural
dynamic responses.

Basically, a TMD is a device consisting of a mass connected to structures using a spring and a viscous
damper. The TMD damping effect depends upon the fact that the TMD response delays the main structural
response by a phase angle of 90�, so that the elastic force transmitted by the TMD acts like a viscous force
on the main structure. This condition will not occur unless the TMD frequency is tuned to the frequency of
the main structure and the excitation has this frequency content. Therefore, the structural property infor-
mation is very essential for the optimum design of a passive TMD. In previous studies about TMDs, most
of the researchers assumed that the controlled structural base is fixed, which is accurate only for structures
built on rocks. In fact, many buildings are constructed on soft medium where the soil–structure interaction
(SSI) effect may be significant. It is well known that the strong SSI effect would significantly modify the
dynamic characteristics of structures such as natural frequencies, damping ratios and mode shapes (Velet-
sos, 1977; Wolf, 1985, 1988). Several researchers studied the SSI effect on the performance of TMD for pla-
nar buildings subjected to wind and earthquake excitations but led to different conclusions. Xu and Kwok
(1992) investigated the wind-induced motion of two super tall structures (a 76-story RC building and a
370 m tower) mounted with TMD, taking into account the effect of soil compliancy under the footing. They
claimed that soil compliancy will affect structural responses as well as the TMD effectiveness. Wu et al.
(1999) focused on the TMD seismic performance for structures of shallow foundations. They performed
numerical investigations for a specific TMD–structure (with height of 45 m) system built on soils with var-
ious shear wave velocities and found that the TMD effectiveness would decrease rapidly as the soil medium
becomes softer. This is due to the fact that the entire soil–structure system gets more system damping for
softer soil. The efforts of Gao et al. (1996) showed that the TMD is an effective vibration control device.
However, the proposed elastic half-space model without considering material damping for soil which
was not satisfied for seismic application was questionable and thought to be the reason that the TMD
worked.

Since the SSI effect is generally difficult to be assessed accurately, the TMD detuning effect will occur
because the TMD does not tune to the right frequency. To solve the problem, using MTMD is one of
the promising solutions. The MTMD is a dynamic vibration control device that contains several parallel
single-degree-of-freedom (SDOF) substructures. Each substructure has its own mass, damping ratio, and
natural frequency. The MTMD systems with a uniform distribution of natural frequencies were first pro-
posed by Xu and Igusa (1992) and then further investigated by many researchers (Yamaguchi and Harn-
pornchai, 1993; Abe and Fujino, 1994; Kareem and Kline, 1995; Jangid, 1995; Jangid and Datta, 1997; Li
and Liu, 2003; Pansare and Jangid, 2003). It has been shown that the MTMD is more effective and reliable
in the mitigation of structural vibration than single TMD (STMD). The original idea behind MTMD is to
reduce the detuning effect through appropriately distributing the tuning frequencies, which is a critical and
important issue to assure its vibration control effectiveness. The objective of this paper is then to investigate
the influence of SSI effect on the performance of MTMD to suppress the excessive vibration of torsionally
coupled buildings. An accurate approach to evaluate the soil–irregular building interaction effect in fre-
quency domain developed by Wu et al. (2001) is employed to calculate the dynamic response for a building
founded on soft soil under ground excitations. Two dimensionless parameters, stiffness ratio of soil relative
to structure and slenderness ratio of structure, are introduced to fully examine the MTMD performance for
various irregular buildings and soil conditions as SSI effect is significant. The optimization procedure to
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determine the system parameters (in particular the tuning frequencies) of an MTMD system considering
torsionally coupled effect of the main structure is presented. To compare the vibration control effectiveness
between MTMD and STMD, the response spectra for real earthquakes are also illustrated to ensure the
benefit and reliability of MTMD.
2. System model and dynamic equations of motion

The system considered in this study, as shown in Fig. 1, is represented by a single-story building resting
on the surface of a homogeneous elastic half-space. The structural model consists of a rigid floor of mass m,
a rigid foundation of mass mb, and axially inextensible columns of height h. The MTMD with p numbers of
parallel SDOF systems is installed on the floor moving in the x-direction. Each SDOF system contains a
mass msk which connects with the floor by a damper csk and a spring ksk and is located at a distance of
dsk from the x-axis, where k = 1,2, . . . ,p. The floor level and the foundation mat are assumed to be of neg-
ligible thickness and of arbitrary shape. Two orthogonal principal axes of mass (x and y) can be defined
through the center of mass at the floor or at the foundation and the vertical axis of reference (z) passes
through the center of mass. A uni-directional horizontal ground acceleration along the x-direction, €xg, is
considered. For simplicity and without loss of generality, one way eccentricity between the centers of mass
and resistance along the y-direction denoted by e is considered in this study. Proportional viscous damping
is assumed for the building such that the superstructure possesses classical normal modes. Complete bind-
ing is also assumed between the foundation and the supporting soil, which is characterized by its mass den-
sity, q, shear wave velocity, vs, and Poisson�s ratio, t.

The dynamic behavior of the investigated torsionally coupled building subject to a free-field ground mo-
tion xg can be completely described by the following five degrees of freedom: horizontal translation of the
floor with respect to the foundation, u; twist about the z-axis of the floor with respect to the foundation, h;
horizontal translation of the foundation, x; rocking about the y-axis of the whole building, /; and twist
about the z-axis of the foundation, hb. Moreover, the displacement of the kth DOF of MTMD with respect
to the installation location is represented by vsk . Applying the substructure method conventionally adopted
in the SSI analysis, the response of the building–MTMD subsystem can be solved by using the interaction
forces including horizontal shear, V, overturning moment, M, and torque, T, developed at the foundation–
soil interface to replace the soil subsystem.

Since the parameters of soil are generally difficult to be accurately estimated, it is not appropriate to de-
sign the MTMD for an uncertain SSI system. In this paper, the MTMD is treated as a control device to
alter the characteristics of the superstructure system. The undamped equations of motion for the investi-
gated building–MTMD superstructure system can be expressed as
mð€uþ €xþ h€/Þ þ kuðu� ehÞ ¼
Xp
k¼1

ðcsk _vsk þ ksk vsk Þ ð1aÞ

Jð€hþ €hbÞ þ khh� kueðu� ehÞ ¼
Xp
k¼1

ðcsk _vsk þ ksk vsk Þesk ð1bÞ

msk ½€xþ €uþ h€/þ €vsk þ esk ð€hb þ €hÞ� þ csk _vsk þ ksk vsk ¼ 0 ðk ¼ 1; 2; . . . ; pÞ ð1cÞ
where ku and kh are the lateral and torsional story stiffness; J and Jb are the mass polar moments of inertia
about the z-axis of the floor and the foundation, respectively. Defining J = mr2 where r = radius of gyration
of the floor; ke = e/r; ksk ¼ dsk=r; xu ¼

ffiffiffiffiffiffiffiffiffiffi
ku=m

p
; xh ¼

ffiffiffiffiffiffiffiffiffiffi
kh=J

p
; xsk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ksk=msk

p
; nsk ¼ csk=2xskmsk ,



Fig. 1. Irregular building–MTMD–soil interaction model.
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qsk ¼ msk=m, uh = rh, x/ = h/ and xh = rhb, and applying structural damping, Eqs. (1a)–(1c) can be rear-
ranged in matrix form as
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Mb 0

Msb Ms

� � €Ub

€Us

( )
þ

Cb 0

0 Cs

� � _Ub

_Us

( )
þ

Kb 0

0 Ks

� �
Ub

Us

� �
¼ FMTMD

b

0

( )
þ

�rb

�rs

� �
€Xb ð2Þ
where Mb, Cb, and Kb are 2 · 2 mass, damping, and stiffness matrices of building, and
Mb ¼
1 0

0 1

� �
; Kb ¼

x2
u �kex2

u

�kex2
u x2

h þ k2ex
2
u

" #
ð3Þ
In Eq. (3), xu and xh represent the translational and torsional natural frequencies of the fixed-base tor-
sionally uncoupled system, respectively. Ms, Cs and Ks are p · p mass, damping and stiffness diagonal
matrices of the MTMD system, respectively, and take the forms as
Ms ¼ I ; Cs ¼ diagð2nskxsk Þ; Ks ¼ diagðx2
sk
Þ ð4Þ
Moreover,
Msb ¼

1 ks1
1 ks2

..

. ..
.

1 ksp

2
66664

3
77775; rb ¼

1 1 0

0 0 1

� �
; rs ¼

1 1 ks1
1 1 ks2

..

. ..
. ..

.

1 1 ksp

2
66664

3
77775 ð5Þ
UT
b ¼ f u uh g, UT

s ¼ f vs1 vs2 . . . vsp g and €X
T

b ¼ f€x €x/ €xh g are the building displacement vectors,
MTMD stroke vector and the foundation excitation vector, respectively. Substituting
UbðtÞ ¼ UqðtÞ ð6Þ� �

into Eq. (2) where U ¼ /11 /12

/21 /22

is the 2 · 2 mode shape matrix of the fixed-base building and q(t) is the

2 · 1 modal displacement vector and multiplying UT to the first row of Eq. (2), it becomes
M�
b 0

M�
sb Ms

� �
€qðtÞ
€UsðtÞ

� �
þ

C�
b C�

bs

0 Cs

� �
_qðtÞ
_UsðtÞ

� �
þ

K�
b K�

bs

0 Ks

� �
qðtÞ
UsðtÞ

� �
¼

�Cb

�rs

� �
€XbðtÞ ð7Þ
where
ðM�
sbÞ

T ¼
/11 þ /21ks1 /11 þ /21ks2 � � � /11 þ /21ksp
/12 þ /22ks1 /12 þ /22ks2 � � � /12 þ /22ksp

" #

C�
bs ¼

�2ns1xs1qs1ð/11 þ /21ks1Þ �2ns2xs2qs2ð/11 þ /21ks2Þ � � � �2nspxspqspð/11 þ /21kspÞ
�2ns1xs1qs1ð/12 þ /22ks1Þ �2ns2xs2qs2ð/12 þ /22ks2Þ � � � �2nspxspqspð/12 þ /22kspÞ

" #

K�
bs ¼

�x2
s1
qs1ð/11 þ /21ks1Þ �x2

s2
qs2ð/11 þ /21ks2Þ � � � �x2

sp
qspð/11 þ /21kspÞ

�x2
s1
qs1ð/12 þ /22ks1Þ �x2

s2
qs2ð/12 þ /22ks2Þ � � � �x2

sp
qspð/12 þ /22kspÞ

" #

Cb ¼
/11 /11 /21

/12 /12 /22

� �
Considering the orthogonality of U and assuming proportional damping matrix, one can obtain
M�

b ¼ diag � 1 1½ �, C�
b ¼ diag � 2n1x1 2n2x2½ � , K�

b ¼ diag � x2
1 x2

2

� �
where nj and xj (j = 1,2) are the

jth modal damping ratio and modal frequency of the building.
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3. Optimal design of MTMD

3.1. MTMD performance index

Taking the Fourier transformation for Eq. (7), the dynamic equations in frequency domain can be ex-
pressed as
qðxÞ
UsðxÞ

� �
¼ �x2

M�
b 0

M�
sb Ms

� �
þ ix

C�
b C�

bs

0 Cs

� �
þ

K�
b K�

bs

0 Ks

� �� 	�1 �Cb

�rs

� �
€XbðxÞ

¼
HbbðxÞ HbsðxÞ
HsbðxÞ HssðxÞ

� � �Cb

�rs

� �
€XbðxÞ ð8Þ
In the right-hand side of Eq. (8), the first matrix can be represented in detail as
ð9Þ
in which
B0
j ¼ �x2 þ ixð2njxjÞ þ x2

j ¼ x2
1½b

2 þ ið2njrjÞ þ r2j � ¼ x2
1Bj

C0
k ¼ qsk ;1½�ixð2nskxsk Þ � x2

sk
�ð/11 þ /21ksk Þ ¼ x2

1qsk ;1½�ibð2nsk rfk Þ � r2fk �ð/11 þ /21ksk Þ ¼ x2
1Ck

E0
k ¼ qsk ;2½�ixð2nskxsk Þ � x2

sk
�ð/12 þ /22ksk Þ ¼ x2

1qsk ;2½�ibð2nsk rfk Þ � r2fk �ð/12 þ /22ksk Þ ¼ x2
1Ek

D0
k ¼ �x2ð/11 þ /21ksk Þ ¼ x2

1½�b2ð/11 þ /21ksk Þ� ¼ x2
1Dk

F 0
k ¼ �x2ð/12 þ /22ksk Þ ¼ x2

1½�b2ð/12 þ /22ksk Þ� ¼ x2
1F k

G0
k ¼ �x2 þ ixð2nskxsk Þ þ x2

sk
¼ x2

1½�b2 þ ibð2nsk rfk Þ þ r2fk � ¼ x2
1Gk
where j = 1, 2 and k = 1, 2, . . . ,p. The elements of the first two rows of the matrix at right-hand side in
Eq. (9) can be analytically solved and represented as
H 11 ¼ B2 �
Xp
k¼1

EkF k

Gk
; H 12 ¼

Xp
k¼1

CkF k

Gk

Il ¼
1

Gl
�B2Cl þ Cl

Xp
k¼1ðk 6¼lÞ

EkF k

Gk
� El

Xp
k¼1ðk 6¼lÞ

CkF k

Gk

 !

H 21 ¼
Xp
k¼1

DkEk

Gk
; H 22 ¼ B1 �

Xp
k¼1

CkDk

Gk
ð10Þ
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Kl ¼
1

Gl
�B1El � Cl

Xp
k¼1ðk 6¼lÞ

DkEk

Gk
þ El

Xp
k¼1ðk 6¼lÞ

CkDk

Gk

 !

Q ¼
Xp�1

j¼1

Xp
k¼jþ1

CjDjEkF k � CjDkEkF j � CkDjEjF k þ CkDkEjF j

GjGk

� 	
� B1

Xp
k¼1

EkF k

Gk
� B2

Xp
k¼1

CkDk

Gk
þ B1B2
From Eq. (8), the modal response vector of structure, q(x), can be extracted and takes the form as
qðxÞ ¼ �½HbbðxÞCb þHbsðxÞrs�€XbðxÞ ð11Þ

or
q1ðxÞ
q2ðxÞ

� �
¼ �

Hq1€xðxÞ Hq1€xhðxÞ Hq1€x/ðxÞ
Hq2€xðxÞ Hq2€xhðxÞ Hq2€x/ðxÞ

" # €X ðxÞ
€X hðxÞ
€X /ðxÞ

8><
>:

9>=
>; ð12Þ
where Hq1€xiðxÞ and Hq2€xiðxÞ are the transfer functions of q1(x) and q2(x) with respect to excitation €X iðxÞ,
and
Hq1€xiðxÞ ¼
X2
k¼1

H 1kCb;k1 þ
Xp
k¼1

IkCs;k1 ð13Þ

Hq2€xiðxÞ ¼
X2
k¼1

H 2kCb;k2 þ
Xp
k¼1

KkCs;k2 ð14Þ
In Eq. (12), it is observed that the decrease of the amplitude of Hq1€xiðxÞ and Hq2€xiðxÞ indicates the reduc-
tion of structural modal responses. It is generally known that an earthquake excitation has wide-banded
frequency content. Most of the dominant frequencies of building are smaller than the cutting-off frequency
of the excitation spectrum. The mean-square response which is related to the area of the transfer function
becomes important. Therefore, the MTMD performance index, Rj, is defined as
Rj ¼

R1
0

Hqj€xiðxÞ



 


2

MTMD
dx

R1
0

Hqj€xiðxÞ



 


2

NOMTMD
dx

ð15Þ
3.2. Optimization of MTMD parameters

In Eq. (15), the selection of Hqj€xiðxÞ is dependent upon the MTMD control goal. Moreover, Rj is rec-
ognized as a function of structural parameters: n1, n2 and U, which should be known in prior, and the
MTMD parameters: qsk , nsk , rfk (the frequency ratio of the kth substructure to the controlled mode of
the structure) and ksk . The MTMD mass ratio is assigned based on construction costs and structural capac-
ity considerations before the MTMD design. Moreover, assuming that each MTMD substructure has the
same mass ratio and damping ratio ns0 , and they are uniformly distributed at the central location ratio ks0
with known spacing, the optimal MTMD parameters, rf1 ; rf2 ; . . . ; rfp ; ns0 and ks0 can be obtained through
simultaneously solving the following equations:
oRj

orf1
¼ oRj

orf2
¼ � � � ¼ oRj

orfp
¼ 0;

oRj

oks0
¼ 0;

oRj

ons0
¼ 0 ð16Þ
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3.3. Optimal location of MTMD

Theoretically, the MTMD optimal central location-ratio ðks0Þopt is found from Eq. (16). However, in
fact, the primary structural mode-shape functions contain some information for determining ðks0Þopt. From
previous studies, it is well known that the optimal TMD location is at the position where the mode-shape
value of the controlled mode is maximal. Moreover, as stated earlier, one set of MTMD is used for reducing
one of the structural modes. As the high structural modes are significant, another set of MTMD must be
installed. In this situation, the MTMD location should be carefully determined to avoid interaction among
the MTMDs and unexpected amplification for the uncontrolled modes. From this point of view, the opti-
mal MTMD location should satisfy the following both conditions as far as possible: (1) at the position
where the mode-shape value of the controlled mode is maximum and (2) at the position where the
mode-shape value of the uncontrolled mode is minimum. For the system model considered in this study,
the optimal MTMD central location for controlling the first mode should satisfy the equation,
/12 þ ks0/22 ¼ 0, or
ðks0Þ1st ¼ �/12

/22

ð17Þ
Similarly, the optimal MTMD central location-ratio for controlling the second mode then satisfies the
equation, /11 þ ks0/21 ¼ 0, or
ðks0Þ2nd ¼ �/11

/21

ð18Þ
Fig. 2 illustrates the optimal MTMD locations for three cases of various ke and kx. The dash-dot line
represents the case of kx(=xh/xu) � 1, which the translational stiffness is weaker than the torsional stiffness
so that the translational motion dominates the first mode. In this case, only one set of MTMD controlling
the first mode is required. For various eccentricity ratio ke, it can be seen that the optimal location ratio
ðks0Þ1st is close to zero. That indicates the optimum MTMD location is at the vicinity of the mass center
of the floor. Since the torsional response is very small, the eccentrically installed MTMD to enhance the
torsional resistance of the building is not required, as expected. However, when kx � 1, one set of MTMD
controlling the torsional motion (the first mode) located at the vicinity of the positive floor edge is required.
When kx = 1, translational and torsional modes are equally important. Two sets of MTMD located respec-
tively near the vicinity of ks0 ¼ 1.0 (which is at the opposite side of the center of floor rigidity) and
ks0 ¼ �1.0 (which is at the same side as the center of floor rigidity) are required.
3.4. Optimal mass–distribution ratio

For a highly torsionally coupled building, its dynamic responses are dominated by the first three modes.
To reduce both the first and higher modal responses simultaneously, the MTMD mass should be divided
into several appropriate parts to control all significant modes. The ratio of MTMDmass for higher mode to
that for the first mode, which makes the structure response minimum, is called the optimal mass-distribu-
tion ratio. To illustrate this concept, the building model described in this study with a large eccentricity-
ratio ke = 0.3, and two MTMDs systems with a total mass ratio of 2% are used as an example. The
mean-square-response ratios Ru€x and Ruh€x which are respectively defined as
Ru€x ¼
R1
0

Hu€xðxÞj j2MTMD dxR1
0

Hu€xðxÞj j2NOMTMD dx
ð19Þ
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Fig. 2. Optimal MTMD planar location for an irregular building with various ke and kx.
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and
Ruh€x ¼
R1
0

Huh€xðxÞ


 

2

MTMD
dxR1

0
Huh€xðxÞ


 

2

NOMTMD
dx

ð20Þ
are used to evaluate the MTMD control efficacy for translational and torsional responses, respectively.
With the stiffness ratio kx = 1.0 and 2.0, the values of Ru€x and Ruh€x with various mass-distribution ratio
qs,2/qs,1 (where qs,j means the MTMD mass ratio for controlling the jth mode) are plotted in Fig. 3. It is
found from the Ru€x curves that the optimal qs,2/qs,1 corresponding to the minimum value of Ru€x is zero
for the case of kx = 2.0. That indicates it is beneficial to use the total MTMD mass to control the first
modal response. This is reasonable because the building is rigid in torsional direction and the translational
motion dominates the first modal response. Moreover, for the case of ke = 0.3 and kx = 1.0, both the first
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Fig. 3. Mean-square-response ratios Ru€x and Ruh€x with different kx for various MTMD mass-distribution ratios.
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and second modes are important. Fig. 3(a) shows that the optimal qs,2/qs,1 which makes Ru€x minimum is
about 0.26. From Fig. 3(b), we found that it also close to the optimal mass-distribution ratio for minimizing
Ruh€x. It means the optimum MTMD mass ratios to control the first and second modal responses are 1.48%
and 0.52%, respectively.
4. Numerical verifications

To verify the vibration control effectiveness of MTMDs, the transfer functions and the time-history re-
sponses of irregular buildings with and without MTMDs under real earthquake excitations are compared in
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this section. Three MTMD systems with same total mass but different number of substructures (for exam-
ple, with 1, 3 and 7 substructures labeled as �STMD�, �MTMD(3)� and �MTMD(7)�, respectively) are used to
examine the influence of substructure number of MTMD systems on the vibration control effectiveness.
Table 1
Optimal MTMD parameters for cases 1–3 irregular building–MTMD systems

Total mass ratio,
qs

Building parameters Controlled mode
(mass ratio)

Number of
substructures, p

Location
ratio, ksk

Damping
ratio, ns0

Frequency
ratio, rfk

2% Case 1: ke = 0.3, kx = 2.0 First mode (2%) 1 0.0962 7.0% 0.968

3 0.0462 3.3% 0.902
0.0962 0.968
0.1462 1.044

7 �0.0538 1.8% 0.871
�0.0038 0.905
0.0462 0.936
0.0962 0.967
0.1462 1.000
0.1962 1.037
0.2462 1.083

Case 2: ke = 0.3, kx = 1.0 First mode (2%) 1 0.8612 9.2% 0.948

3 0.8112 4.4% 0.864
0.8612 0.946
0.9112 1.046

7 0.7112 2.5% 0.826
0.7612 0.864
0.8112 0.901
0.8612 0.939
0.9112 0.982
0.9612 1.032
1.0112 1.098

Case 3: ke = 0.3, kx = 1.0 First mode (1.59%) 1 0.8612 8.2% 0.958

7 0.7112 2.2% 0.846
0.7612 0.881
0.8112 0.915
0.8612 0.950
0.9112 0.988
0.9612 1.033
1.0112 1.091

Second mode (0.41%) 1 �1.1612 4.9% 1.324

7 �1.2062 1.2% 1.230
�1.1912 1.266
�1.1762 1.297
�1.1612 1.328
�1.1462 1.359
�1.1312 1.393
�1.1162 1.435
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Moreover, to illustrate the advantages of MTMD over TMD, their sensitivities of control performance on
the estimation errors of primary structural parameters are investigated. Some practical considerations for
the real implementation of MTMD system are also made.

4.1. Suppression of transfer function amplitude

To consider the torsion-coupling effect, three building–MTMD systems with same ke = 0.3 but different
kx are examined. Table 1 lists the optimal MTMD system parameters. Cases 1 and 2 are asymmetrical
buildings with low and high coupling between the translational and torsional motions, respectively. The
MTMDs for both buildings are designed to control the first modal responses. The case-3 building is same
as that in case 2, but its MTMD is divided into two MTMD systems tuning to both the first and second
modes. Fig. 4 shows the normalized transfer function amplitude of translation displacement (which is equal
to the transfer function amplitude multiplying by xu) with respect to the foundation translation for case-1
building with and without MTMDs. It is obvious to see that the first mode of building is separated into
several small modes, where the number of peaks is equal to the number of MTMD substructure plus
one. Moreover, the more number of substructures, the more reduction in both peak and mean-square re-
sponses for the building. Since the first mode dominates the entire structural response in case 1, the optimal
MTMD mass distribution ratio for the second mode is zero. In other words, the MTMD is only used to
control the first mode. It can also be seen that the local peaks of the transfer function with different
MTMDs do not have the same magnitude. This is due to the fact that the MTMD optimization criteria
is generated based on Eq. (16). Fig. 5 shows the normalized displacement transfer function for case-2 build-
ing with and without MTMDs. Because the torsional rigidity is small relative to translational rigidity and
the eccentricity is large, the torsion-coupling effect becomes significant. The first and second modes are both
important to the translational and torsional motions. Since the MTMD is only designed to control the first
mode, it is thus seen that the second mode becomes more dominant after the installation of MTMDs. The
transfer functions for case 3 are illustrated in Fig. 6. With the optimal MTMD mass distribution for two
controlled modes, it is clearly seen that both the first and second modal amplitudes are significantly
suppressed.
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4.2. Vibration control effectiveness of MTMD considering SSI effect

In this paper, the methodology developed by Wu et al. (2001) is employed to evaluate the floor response
of irregular buildings with the consideration of SSI effect. The case-2 and -3 irregular building–MTMD sys-
tems mentioned in last section are investigated. Besides the system parameters shown in Table 1, other
dimensionless SSI-related parameters of the torsionally coupled building-foundation–soil system used in
this study are also listed in Table 2. For general buildings (kh = h/r = 3) and slender buildings (kh = 5),
the mean-square-response ratios Ru€xg under ground excitation €xg, are illustrated in Fig. 7 against r ranging
from 0.5 to 5.0. Here, the parameter r, is defined as ms/hxu which is regarded as a measure of soil stiffness
relative to the structure. Observe that when the soil is soft relative to the building (i.e., when r is small),
STMD and MTMD become less effective. This results from the fact that the detuning effect occurs because
the system properties change: the structural frequencies decrease and the damping ratio may increase or
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Table 2
Dimensionless SSI-related parameters for torsionally coupled building-foundation–soil system

Category Description Notation Magnitude

Structural parameters Shape factor of structure ks ¼ I
J 0.5

Height-to-base ratio kh ¼ h
r 3.0, 5.0

Foundation parameters Mass ratio dm ¼ mb

m 0
Shape factor of foundation ds ¼ Ib

Jb
0.5

Ratio of radius of gyration dr ¼ rb
r 1

Soil parameters Poisson�s ratio m 1/3
Relative stiffness of soil to structure r ¼ vs

hxu
0.5–5.0

Relative density of structure to soil c ¼ m
qr2h 0.5
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decrease due to SSI effect. In most conditions, MTMDs have better control effectiveness than STMD except
when r is less than about 0.75 and kh = 5. This phenomenon indicates that the sensitivity of MTMD to the
variations in system parameters is higher than that of STMD. In order to improve the undesired MTMD
detuning problem, MTMD with 100% enlarged frequency spacing is employed and the corresponding Ru€xg

is also shown in Fig. 7 (labeled as MTMD(7)*). It is seen that the improved MTMDs are less effective than
optimal MTMDs when r is large, but indeed have better control effectiveness when the soil is very soft, in
particular for buildings with large kh. The figure also shows that the case-3 MTMD has better performance
than case-2 MTMD in most conditions as expected.

To evaluate the dynamic structural responses, the acceleration record (PGA = 0.821 g) of KJM000 com-
ponent at the Japanese KJMA station during 1995 Kobe earthquake is used as the ground excitation. From
Sikaroudi and Chandler (1992), it is known that for many practical types of building structure, hxu is
approximately 60p. Therefore, in this study the values r = 1.5 corresponding to soft soil (vsffi 280 m/s) is
used to represent the site conditions of the Kobe earthquake. The value r = 1 representing the fixed-base
condition is also investigated to examine the influence of SSI effect. In order to consider the given irregular
building with various xu(=2p/Tu) values, the corresponding kh value should also be taken into account. In
Sikaroudi and Chandler (1992), the empirical relationship between kh and Tu is approximately assumed to
be kh = 2Tu. According to these conditions, the dynamic responses are calculated using the inverse Fourier
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transform of the building response in frequency domain. Fig. 8 shows the peak floor translational acceler-
ation of the irregular building with various values of Tu under the Kobe earthquake. Comparing the curves
with and without considering the SSI effect, it is found that the building response would generally be over-
estimated if the SSI effect is ignored. These figures also show that the STMD and MTMD control effective-
ness is strongly dependent upon the frequency content of the earthquake. Moreover, the SSI effect decreases
the STMD and MTMD effectiveness since the detuning effect occurs. If the SSI effect is not considered, the
vibration control effectiveness will be overestimated. In addition, controlling two structural modes is the
better strategy. The time history curves illustrated in Fig. 9 are the dynamic responses of floor translation
for the building of Tu = 0.4 s in case 2 (or case 3) without and with various MTMDs considering SSI effect.
It is clearly shown that not only the peak amplitude but the entire trace of the displacement and acceler-
ation responses are significantly reduced due to the installation of MTMDs, in particular for the case-3
MTMD system in controlling two structural modes. Moreover, similar study is performed for buildings
under an earthquake excitation measured at soft site. Fig. 10 shows the peak accelerations of floor trans-
lation for irregular buildings with various values of Tu under the ground acceleration (PGA = 0.137 g) mea-
sured at TAP005 station in Taipei basin during the 1999 Taiwan Chi-Chi earthquake. It is obviously seen
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that the peak floor acceleration was reduced for the buildings with fundamental period close to that of the
ground motion (about 0.8 s) due to the installation of STMD or MTMDs. Similar conclusions are drawn as
those from Fig. 8.
5. Conclusions

The SSI effect indeed deteriorates the MTMD vibration control effectiveness. When an irregular build-
ing is built on soft soils, the SSI and torsionlly coupled effects should be considered to determine the opti-
mal parameters of MTMD to avoid overestimating their effectiveness. Since a MTMD has many
frequencies, its detuning effect can be reduced through appropriately adjusting the MTMD frequency
spacing. It is the benefit which the STMD does not possess. The MTMD effectiveness is also dependent
upon the characteristics of the external excitation. When the building dominant frequencies are located
within the bandwidth of the external loading spectrum, MTMD can always reduce the building responses.
It has been proven that the proposed MTMD is a useful vibration control device and more effective and
robust than STMD.
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